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Abstract. A simple chiral quark model of the Nambu–Jona-Lasinio (NJL) type with a quark confinement
mechanism is constructed for the description of the light-meson sector of QCD at finite temperature.
Unphysical quark production thresholds in the NJL model are excluded by an infrared cut-off in the mo-
mentum integration within quark loop diagrams. This chiral quark model satisfies the low-energy theorems.
Using the vacuum masses and decay widths of π- and ρ-mesons for fixing the model parameters, the prop-
erties of the σ-meson are derived. Within the Matsubara formalism, the model is systematically extended
to finite temperatures where chiral symmetry restoration due to a dropping constituent quark mass entails
a vanishing of the infrared cut-off (deconfinement) at the pion Mott temperature Tc = 186 MeV. Besides
the pion mass and weak decay constant, the masses, coupling constants and decay widths of σ- and ρ-
mesons in hot matter are investigated. The quark-antiquark decay channel of the light mesons is opened
for T > Tc only and becomes particularly strong for the ρ-meson. The two-pion decay channel below Tc

has almost constant width for the ρ-meson up to Tc, but for the σ-meson it closes below Tc such that a
scalar meson state with vanishing width is obtained as a precursor of the chiral/deconfinement transition.

PACS. 11.30.Rd Chiral symmetries – 12.38.Lg Other nonperturbative calculations – 13.25.-k Hadronic
decays of mesons – 11.10.Wx Finite-temperature field theory

1 Introduction

One of the most interesting phenomena predicted by QCD
for a hot and dense matter is the existence of the quark-
gluon plasma (QGP) phase [1], where hadrons do not ex-
ist as bound states, and the strongly interacting matter
should be described in terms of QCD fundamental fields:
quarks and gluons. A number of modern experiments have
been already directed on the search of signals that can be
interpreted as evidence for the existence of the QGP, and
still new projects are upcoming. The most straightforward
experiment, where QGP is hoped to be found, is a colli-
sion of heavy ions with ultrarelativistic energies, where
hadrons form so hot and dense matter that the condi-
tions necessary for QGP creation are fulfilled. However,
one cannot tell certainly if QGP was seen or not without
laying a proper theoretical ground for such an experiment.
Actually, one needs to know what is to be expected in or-
der to unambiguously detect whether the QGP is formed.
Taking into account that a direct modelling of QGP from
QCD is not available at present, one needs an appropriate
quark model which would reflect the most important fea-
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tures of strong interactions, on the one hand, and would
be tractable, on the other hand. Among the various ap-
proaches, one can select the Nambu–Jona-Lasinio (NJL)
model.

The Nambu–Jona-Lasinio model is a convenient semi-
phenomenological quark model for the description of the
low-energy meson physics [2–6]. Within this model the
mechanism of spontaneous breaking of chiral symmetry
(SBCS) is realized in a simple and transparent way, and
the low-energy theorems are fulfilled.

However, the ordinary NJL model fails to prevent had-
rons from decaying into free quarks, which makes the re-
alistic description of hadron properties on their mass shell
questionable. The solution to this problem seems to be a
very difficult task, and different methods have been pro-
posed for this purpose [7–12]. In our previous papers [13–
15], a chiral quark model was suggested where unphysical
quark-antiquark thresholds were eliminated by means of
an infrared (IR) cut-off. As a result, the pole of the inte-
grand in a quark loop integral turned out to be outside
the integration interval, so that no imaginary part occurs.

This method of modeling the phenomenon of confine-
ment is based on the idea of combining the NJL [2–6] and
bag models [16–18]. Together with the ultraviolet (UV)



320 The European Physical Journal A

π

π

q

q

R λ~

σ, ρ

-1

r ~ Λ-1

Om
UV

q

IR  domain
Interaction
domain

Fig. 1. The three domains for quark propagation in the coor-
dinate space and their relation to the UV and IR cut-offs in
the momentum space.

cut-off, which is necessary to eliminate the UV divergence,
we introduce the IR cut-off and thereby divide the momen-
tum space into three domains. In fig. 1 these domains are
represented schematically in the coordinate space.

The first domain corresponds to short distances (large
momenta), where quarks are not confined and the chiral
symmetry is not spontaneously broken. This domain is
excluded by the UV cut-off Λ.

In the second domain, SBCS takes place, and the quark
condensate appears, which leads to the replacement of the
current quarks by constituent ones. According to the idea
of the bag model, it is necessary to assume that quarks
are not allowed to propagate over distances exceeding the
dimensions of a bag. In the language of quark-loop inte-
grals, this leads to a low momenta, infrared (IR) cut-off
λ, that provides the confinement of quarks.

In [13–15], the IR cut-off λ was chosen to be propor-
tional to the constituent quark mass m: λ = c m, where
the arbitrary parameter c was the same for all mesons. At
c ∼ 2, the nonphysical quark-antiquark thresholds were
absent for the π-, σ-, and ρ-mesons in the vacuum. How-
ever, in hot matter, these thresholds appeared at certain
temperatures which, on the one hand, did not coincide
with the chiral symmetry restoration (CSR) temperature
Tc and, on the other, were different for various sorts of
mesons.

In the present work, we suggest a new version of the
model with an IR cut-off which differs from that given in
[13–15] in two main points. First, we suggest that the IR
cut-off is different for various mesons and increases with
the mass of the corresponding meson. Second, the decon-
finement phase transition occurs at a certain temperature
Tc, unique for all mesons, which coincides with the CSR
temperature. In order to define this critical temperature
uniquely, also away from the chiral limit, we will identify
it with the pion Mott temperature. Above this tempera-
ture the pion (and also the other mesons) are no longer
bound states but resonances in the qq̄ continuum instead.

We use our model to investigate the behavior of the
constituent quark mass, the pion weak decay constant Fπ,
and the masses and coupling constants of the π-, σ- and ρ-
mesons within the temperature interval up to the CSR and
deconfinement phase transition. Very interesting effects at
high temperature are revealed for the σ-particle. The σ-
meson, while having a noticeable width for the decay into
two pions in the vacuum, can appear as a very narrow
resonance in some processes occurring in hot and dense
matter. This may lead to a significant enhancement of the
dilepton and γγ production in the processes ππ → e+e−
and ππ → γγ near the phase transition [19,20]. Detailed
calculations of the effect of excess low-energy photon pro-
duction in the process ππ → γγ have been performed
in [20] (see also [21]). These effects can be understood as
precursors of the phase transition between hadron matter
and the QGP to be investigated in heavy-ion collisions
performed, e.g., at CERN SPS, at the new Brookhaven
relativistic heavy-ion collider (RHIC) [22] or at future fa-
cilities dedicated to the QGP search. Note that in [19,20]
a simple version of the NJL model was used, where the
confinement of quarks had not been taken into account.
Insofar as the confinement is important for the study of
the phase transition of hadron matter to QGP, we then
suggest here a new version of the model, with quark con-
finement.

Our paper is organized as follows. In sect. 2, we give
the effective chiral quark Lagrangian and the gap equation
describing SBCS. Here, the pion mass formula in the IR
cut-off scheme is obtained, and it is shown that the pion
is a Goldstone boson in the chiral limit. In sect. 3, the
scalar meson (σ) is considered, and it is demonstrated
that the quark loop with two σ-meson legs does not have
an imaginary part when the IR cut-off λ is used. The
model parameters are fitted in sect. 4. In sect. 5, the σ-
meson mass and the σ → 2π decay width are estimated.
In sect. 6, we introduce a finite temperature generalization
of the model and analyze results. In the last section, we
discuss the obtained results and give a short outlook to
further development of this model.

2 SU(2)×SU(2) Lagrangian, the gap
equation and the pion mass formula

Let us consider an SU(2) × SU(2) NJL model defined by
the Lagrangian

Lq = q̄(i∂/ − m0)q +
G1

2
[
(q̄q)2 + (q̄iγ5�τq)2

]
−G2

2
[
(q̄γµ�τq)2 + (q̄γ5γµ�τq)2

]
, (1)

where q and q̄ are quark fields, and G1 and G2 are the
constants that describe the interaction of quarks in the
scalar (pseudoscalar) and vector (axial-vector) channels.
The notation �τ is used for Pauli matrices, represented
here as components of an isovector. This Lagrangian is
chirally symmetric except for the term containing the cur-
rent quark mass m0.
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As usual, one applies a bosonization procedure [3,4] to
the quark Lagrangian and obtains its equivalent represen-
tation in terms of the scalar (σ), pseudoscalar (�π), vector
(�ρµ) and axial-vector (�a1 µ) meson fields

Lmes = − σ̃2 + �π2

2G1
+

�ρµ
2 +�a2

1 µ

2G2

−iTr ln
{

1 +
1

i∂/ − m
[σ + iγ5�τ�π + �τ �̂ρ + γ5�τ�̂a1]

}
. (2)

Here, the scalar fields σ and σ̃ are connected by the rela-
tion

−m0 + σ̃ = −m + σ . (3)

The vacuum expectation value of σ̃ is nonzero after SBCS
and a new notation for the fluctuating part σ of the scalar
field with zero vacuum expectation value, 〈σ〉0 = 0, is
introduced here. The vector �̂ρ and axial-vector �̂a1 fields
are members of the Dirac algebra: �̂ρ = �ρµγµ, �̂a1 = �a1 µγµ.
Then, from the condition

δLmes

δσ

∣∣∣∣∣
σ=0,�π=0

= 0 , (4)

one obtains the gap equation

m0 = m[1 − 8G1I
Λ
1 (m)] = m + 2G1〈q̄q〉0 , (5)

where 〈q̄q〉0 is the chiral quark condensate. The quantity
IΛ
1 (m) is obtained from the quadratically divergent inte-

gral I∞1 (m) by regularization with the UV cut-off Λ,

IΛ
1 (m) = −i

Nc

(2π)4

∫
d4k

m2 − k2 − iε
θ(Λ2 − |k2

⊥|) =

Nc

(2π)2

∫ Λ

dk
k2

Ek
=

Nc

8π2

[
Λ

√
Λ2+m2−ln

(
Λ +

√
Λ2 + m2

m

)]
, (6)

where Ek =
√

k2 + m2, k⊥ is the 4-momentum of a quark,
transverse to an arbitrary momentum P (P 2 �= 0) (see [23,
24]):

k⊥µ = kµ − Pµ
P · k
P 2

, (7)

so that for P = (M, 0, 0, 0) one has k⊥ = (0, k1, k2, k3); Nc

is the number of colors. For all applications of the model,
we do not introduce an IR cut-off in IΛ

1 (m).
Now let us consider the free part of Lagrangian (2)

for pion fields in the quark one-loop approximation (see
fig. 2)1

L(2)
π = −�π2

2

{
1

G1
− 8IΛ

1 (m) − 4P 2I
(λP ,Λ)
2 (P,m)

}
, (8)

1 The expression enclosed in parentheses can be written in
the form 1/G1 + Ππ(p), where Ππ(p) is the pion polarization
operator.

ππ

σ σ

Fig. 2. The quark-loop diagram for the polarization operator
of σ and π.

where I
(λP ,Λ)
2 (P,m) is obtained from the logarithmically

divergent integral I
(0,∞)
2 (P,m) by applying IR and UV

cut-offs

I
(λP ,Λ)
2 (P,m) =

−i
Nc

(2π)4

∫
θ(Λ2 − |k2

⊥|)θ(|k2
⊥| − λ2

P )d4k

(m2 − k2 − iε)(m2 − (k − P )2 − iε)
=

Nc

2π2

∫ Λ

λP

dk
k2

Ek(4E2
k − P 2)

. (9)

Here, P is the momentum of a bound q̄q state (meson)
and λP is an infrared cut-off introduced in order to re-
move unphysical quark-antiquark production thresholds,
see sect. 3. The last integration in (9) is done in the rest
frame of a meson (P = 0). The integral I

(λP ,Λ)
2 (P,m)

thereby depends on a Lorentz invariant, the meson mass
M . Further, we prefer to consider I

(λP ,Λ)
2 (P,m) as a func-

tion of M :

I
(λM ,Λ)
2 (M,m) ≡ I

(λP ,Λ)
2 (P,m)

∣∣∣
P=(M,0,0,0)

. (10)

To express (8) through physical fields, we renormalize
the pion

�π = gπ(Mπ)�π r, (11)

gπ(Mπ) =
[
4I

(λMπ ,Λ)
2 (Mπ,m)

]−1/2

. (12)

For the pion, there is also an additional renormaliza-
tion factor

√
Z appearing after we take into account π−a1

transitions [4]:

ḡπ = gπ

√
Z, Z−1 = 1 − 6m2

M2
a1

, (13)

where Ma1 = 1230 MeV is the mass of the a1-meson. Thus,
we obtain the following expression for the pion mass:

M2
π = ḡ2

π(Mπ)
[

1
G1

− 8IΛ
1 (m)

]
. (14)

It can be given the form of the Gell-Mann–Oakes–Renner
relation

M2
π ≈ −2

m0〈q̄q〉0
F 2

π

, (15)

where the Goldberger-Treiman relation (see (24) below)
and the gap equation (5) have been used. One can see that
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this pion mass formula is in accordance with the Goldstone
theorem since, for m0 = 0, the pion mass vanishes and the
pion becomes a Goldstone boson.

3 The σ-meson and IR confinement

The free part of Lagrangian (2) for the σ-meson in the
one-loop approximation (see fig. 2) has the following form:

L(2)
σ =−σ2

2

{
1

G1
−8IΛ

1 (m)−4(P 2−4m2)I(λMσ ,Λ)
2 (P,m)

}
.

(16)
After the renormalization of the σ field,

σ = gσ(Mσ)σr, (17)

gσ(Mσ) =
[
4I

(λMσ ,Λ)
2 (Mσ,m)

]−1/2

, (18)

one obtains the expression for the σ-meson mass

M2
σ = g2

σ(Mσ)
[

1
G1

− 8IΛ
1 (m)

]
+ 4m2. (19)

Now, let us consider more carefully the integral

I
(λMσ ,Λ)
2 (Mσ,m) =

Nc

2π2

∫ Λ

λMσ

dk
k2

Ek(4E2
k − M2

σ)
. (20)

If λMσ
= 0, this integral has an imaginary part. Indeed,

the integrand in (20) is singular when its denominator is
equal to zero:

4E2
k − M2

σ = 0 . (21)

The imaginary part appears when the singularity (k =
1
2

√
M2

σ − 4m2) lies within the integration interval. There-
fore, when one applies the IR cut-off

λP = [mc θ(m − mc) + mθ(mc − m)]

×θ(P 2 − 4m2
c)

√
P 2

4m2
c

− 1 , (22)

the denominator of integral (20) has no zero if the new
model parameter mc is smaller then the constituent quark
mass. Thus, integral (20) is real, and the quark-antiquark
production threshold is absent. We consider this property
as a criterion for the quark confinement. It is different from
that of the absence of real mass poles in the quark prop-
agator, which is employed within the DSE approach [10,
11]. The parameter mc is unique for all mesons and pro-
vides the q̄q thresholds after the temperature exceeds the
critical value Tc. The temperature dependence of the me-
son properties following from this definition of the model
will be investigated in detail in sect. 6.

4 Model parameters

In the present model, there are five parameters: the con-
stituent quark mass m, the 3D UV cut-off parameter Λ,

the scalar (pseudoscalar) four-quark coupling constant G1,
the vector (axial-vector) four-quark coupling constant G2,
and the parameter mc. To fix our parameters, we use only
four observables [25]: the pion weak decay constant Fπ =
93 MeV, the ρ → ππ decay constant gexp

ρ = 6.14, the pion
mass Mπ = 140 MeV, the ρ-meson mass Mρ = 770 MeV,
and the model parameter mc, determined as mc = m(Tc).
The value of Tc shall be the temperature above which the
lightest meson can decay into free quarks (pion Mott tem-
perature), which is defined by the formula

2m(Tc) = Mπ(Tc) . (23)

We find that Tc ≈ 186 MeV, and mc ≈ 86 MeV, see sect. 6.
To fix m, Λ, G1, and G2, we use this value of mc and the
following four equations:

1) The Goldberger-Treiman relation

m

Fπ
= ḡπ(Mπ) = gπ(Mπ)

√
Z . (24)

2) The ρ0 → π+π− decay width. The amplitude of this
process is of the form

Aρ→2π = igexp
ρ (pπ+ − pπ−)νρ0

νπ+π−. (25)

In the one-loop approximation, we obtain the following
expression for gexp

ρ :

gexp
ρ = 4Z−1gρ(Mρ)ḡ2

π(Mπ)
[
I
(λMρ ,Λ)

2 (Mρ,m)

+2M2
πJ

λMρ

3V (Mρ,Mπ,m)
]
, (26)

where gρ(Mρ) =
[

2
3I

(λMρ ,Λ)

2 (Mρ,m)
]−1/2

and the in-

tegral J
λMρ

3V (Mρ,Mπ,m) is

J
λMρ

3V (Mρ,Mπ,m) =
1

M2
ρ − 4M2

π

(
I
(λMρ ,Λ)

2 (Mρ,m)

−Ĩ
(λMρ,Λ)
2 (Mπ,m|Mρ)−M2

πI
λMρ

3 (Mρ,Mπ,m)
)

, (27)

where the Ĩ
(λMρ,Λ)
2 (Mπ,m|Mρ) and I

λMρ

3 (Mρ,Mπ,m)
integrals are given below:

Ĩ
(λMρ ,Λ)

2 (Mπ,m|Mρ) =
Nc

16π2

Λ∫
λMρ

kdk
Ek|�p |

× ln

(
(M2

π + 2k|�p |)2 − E2
kM2

ρ

(M2
π − 2k|�p |)2 − E2

kM2
ρ

)
, (28)

I
λMρ

3 (Mρ,Mπ,m) =
Nc

16π2

∞∫
λMρ

kdk
|�p |Ek(M2

ρ − 4E2
k)

×
[
ln

(
(M2

π + 2k|�p |)2 − E2
kM2

ρ

(M2
π − 2k|�p |)2 − E2

kM2
ρ

)

+
Mρ

2Ek
ln

(
M4

π − (EkMρ − 2k|�p |)2
M4

π − (EkMρ + 2k|�p |)2
)]

. (29)
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Here, |�p | =
√

M2
ρ /4 − M2

π is the 3-momentum of a
pion after the decay of a ρ-meson in the rest frame
of ρ.
The factor Z−1 appears due to π−a1 transitions (see
[4]). From these two equations one can find m and Λ.

3) The coupling constant G1 is determined by the pion
mass formula

M2
π = ḡ2

π(Mπ)
[

1
G1

− 8IΛ
1 (m)

]
. (30)

4) The coupling constant G2 is found from the mass for-
mula for Mρ [4]

M2
ρ =

g2
ρ(Mρ)
4G2

=
3

8G2I
(λMρ ,Λ)

2 (Mρ,m)
. (31)

From the gap equation (5), one gets the current quark
mass m0. The results of the parameter fixing procedure
described above are summarized in table 1.

Table 1. Model parameters mc, m, Λ, G1, G2, the current
quark mass m0, and the mass and width of the σ-meson.

mc (MeV) m (MeV) m0 (MeV) Λ (GeV)

86 242 2.1 1.09

G1 (GeV−2) G2 (GeV−2) Mσ (MeV) Γσ (MeV)

2.98 11.8 500 205

For the experimental values of the mass and width
of the σ-meson, there is a wide uncertainty. The average
limits for the mass are reported to be from 400 MeV to
1200 MeV (see [25–27]), and for the width: from 600 MeV
to 1000 MeV. However, smaller values were also obtained:
290 ± 54 MeV [28], 119 ± 13 MeV [29].

5 The σ-meson mass and the decay σ → 2π

The mass of the σ-meson is given by eq. (19). Using this
formula for mc = 86 MeV (see sect. 6), we obtain

Mσ = 500 MeV . (32)

The decay σ → 2π is described by the quark triangle
diagram (see fig. 3).

The amplitude of the process σ → 2π has the form

Aσ→2π = 8mgσ(Mσ)ḡ2
π(Mπ)

[
I
(λMσ ,Λ)
2 (Mσ,m)

+J (Mσ,Mπ,m)
]
σ�π2 , (33)

where

J (Mσ,Mπ,m)=−1
2
(M2

σ−2M2
π)IλMσ

3 (Mσ,Mπ,m). (34)

ρ

σ

π

π

Fig. 3. The triangle quark diagram describing the decay of ρ-
and σ-mesons into two pions.

Then the decay width of the σ-meson is equal to

Γσ→2π =
3
2π

(
m3(1 + δ)

gσ(Mσ)F 2
πMσ

)2 √
M2

σ − 4M2
π =

205 MeV, (35)

where

δ =
J (Mσ,Mπ,m)

I
(λMσ ,Λ)
2 (Mσ,m)

= −0.33 . (36)

Therefore, one can see that our estimates for the σ-meson
mass are in agreement with experimental data [25] (see
also [26–29]) M exp

σ = (400–1200)MeV. Let us note that
the corrections coming from J are important for the calcu-
lation of the decay width. Indeed, a similar contribution to
the ρ → ππ decay width (see (27)) is small, whereas, in the
case of the decay σ → ππ, it makes 30% of the amplitude
and decreases the decay width by half. From this, one can
conclude that the NJL model with the IR cut-off satisfies
both of the low-energy theorems together with SBCS and
gives a satisfactory description of the low-energy physics
of the scalar, pseudoscalar and vector mesons.

6 Finite temperature case

An interesting application of our model is the description
of meson properties in a hot and dense medium. The stan-
dard NJL model has been already used for this purpose
in [6,30,31], where the temperature dependence of quark
and meson masses and of Yukawa coupling constants was
found.

The calculation of the constituent quark and meson
masses at finite temperature can be done in the imaginary
time formalism [32,33]. In all the quark loop diagrams,
now we sum over Matsubara frequencies ωn = (2n+1)πT
instead of integrating over the energy component of the
internal quark 4-momentum. As a result, for the integral
IΛ
1 (m) one has

IΛ
1 (m,T ) = −i

Nc

(2π)4

∫
d4k

θ(Λ2 − |k2
⊥|)

m(T )2 − k2 − iε

× tanh
(

Ek⊥

2T

)
, (37)

Ek⊥ =
√

|k2
⊥| + m2 . (38)
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The integral I
(λM ,Λ)
2 (M,m, T ) for a meson at rest (P =

(M, 0, 0, 0)) in the rest frame of the heat bath is given by

I
(λM ,Λ)
2 (M,m, T ) =

−i
Nc

(2π)4

∫
d4k

θ(Λ2 − |k2
⊥|)θ(|k2

⊥| − λ2
M )

[m(T )2 − k2][m(T )2 − (k + P )2 − iε]

× tanh
(

Ek⊥

2T

) ∣∣∣∣
P=(M,0,0,0)

. (39)

For the integrals Ĩ2 and I3, one obtains:

Ĩ
(λMρ ,Λ)

2 (Mπ,m, T |Mρ) =
Nc

16π2

Λ∫
λMρ

dk
k tanh

(
Ek
2T

)
Ek|�p |

× ln

(
(M2

π − 2k|�p |)2 − E2
kM2

ρ

(M2
π + 2k|�p |)2 − E2

kM2
ρ

)
, (40)

I
λMρ

3 (Mρ,Mπ,m, T ) =
Nc

16π2

Λ∫
λMρ

dk
k tanh

(
Ek
2T

)
|�p |Ek(M2

ρ − 4E2
k)

×
[
ln

(
(M2

π + 2k|�p |)2 − E2
kM2

ρ

(M2
π − 2k|�p |)2 − E2

kM2
ρ

)

+
Mρ

2Ek
ln

(
M4

π − (EkMρ − 2k|�p |)2
M4

π − (EkMρ + 2k|�p |)2
)]

. (41)

The dependence of the constituent quark mass on the
temperature is obtained from the gap equation (5) where
integral I1 is already T -dependent. After we know the
temperature dependence of m, I1, I2, Ĩ2, and I3, using
formulas (13), (14), (18), (19), (24), and (31), we can de-
termine the temperature dependence of Fπ, quark and me-
son masses, coupling constants, and meson decay widths.
The results are shown in figs. 4–7.

The σ → ππ decay width is calculated by the formula

Γσ→2π(T ) =
3|Aσ→2π(T )|2

32πMσ

√
1 − 4M2

π

M2
σ

coth
(

Mσ

4T

)
,

(42)

Aσ→2π(T ) =
2m(T )Z[1 + δ]

√
I
(λMσ ,Λ)
2 (Mσ,m, T )

I
(λMπ ,Λ)
2 (Mπ,m, T )

, (43)

where δ is defined in (36). The cotangent in (42) appeared
due to the interaction with the pion gas in the final state.
Analogously, one has for the ρ-meson:

Γρ→2π(T ) =
|Aρ→2π(T )|2Mρ

48π

(
1 − 4M2

π

M2
ρ

) 3
2

coth
(

Mρ

4T

)
,

(44)

Aρ→2π(T ) =

√
3I

(λMρ ,Λ)

2 (Mρ,m, T )
√

2I
(λMπ ,Λ)
2 (Mπ,m, T )

×
(

1 +
2M2

πJ
λMρ

3V (Mρ,Mπ,m, T )

I
(λMρ , Λ)

2 (Mρ,m, T )

)
. (45)

Fig. 4. The dynamical quark mass m: physical and in the
chiral limit (m0 = 0, dash-dotted line), the pion weak decay
constant Fπ, and half of the pion mass Mπ.

Fig. 5. Masses of σ, π, and ρ. The region above Tc is repre-
sented by dashed lines.

The quantity J
λMρ

3V (Mρ,Mπ,m, T ) is derived from
J

λMρ

3V (Mρ,Mπ,m) (see (27)) by replacing all integrals with
ones depending on temperature.

The critical temperature Tc is determined by the con-
dition that the pion mass is equal to the sum of the masses
of its constituents (the Mott point, see eq. (23)). From
this, one finds Tc ≈ 186 MeV and mc ≈ 86 MeV. Thus, the
lightest meson (pion) is also allowed to decay into its con-
stituent quarks, at T ≥ Tc. For the IR cut-off scheme con-
sidered here, the other mesons also decay into free quarks
if T ≥ Tc.2

Finally, we have the following picture. At low T , the σ-
and ρ-mesons decay mostly into two pions. The pion is sta-
ble since electroweak decay channels can be neglected here

2 Note that in the chiral limit (m0 = 0), chiral symmetry is
restored at Tc.
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Fig. 6. The coupling constants gπ, gσ, and gρ as functions of
the temperature. The region above Tc is represented by dashed
lines.

compared to the strong ones. At higher T , the ρ-meson
still has a noticeable decay width. Unlike the ρ-meson,
the width of the σ-meson first rises at T = 100–150MeV
and then falls down to zero near T = 170 MeV. An in-
creasing of the width is due to the interaction with the
pion gas in the final state, which leads to an additional
factor increasing with temperature. Above Tc, all mesons
are allowed to decay into quark-antiquark pairs, and the
ρ-meson also decays into pion-like quark-antiquark corre-
lations. It is interesting to note that the σ-meson is stable
in the temperature range from 170 MeV to Tc. Here, only
its electroweak decays are possible, they are small and can
be neglected. Thus, we have obtained almost stable scalar
meson states freely propagating through hot matter as a
precursor of the chiral/deconfinement transition.

To estimate the decay widths of π-, σ- and ρ-mesons
into free quarks, one should evaluate the imaginary part
of the corresponding meson propagator that appears if
T > Tc. One thereby has:

Γπ→q̄q(T )=
MπImI

(λMπ ,Λ)
2 (Mπ,m, T )

ReI(λMπ ,Λ)
2 (Mπ,m, T )

, (46)

Γσ→q̄q(T )=
[M2

σ−4m(T )2]ImI
(λMσ ,Λ)
2 (Mσ,m, T )

MσReI(λMσ ,Λ)
2 (Mσ,m, T )

, (47)

Γρ→q̄q(T ) =
MρImI

(λMρ ,Λ)

2 (Mρ,m, T )

ReI
(λMρ ,Λ)

2 (Mρ,m, T )
. (48)

The results are shown in fig. 7 by dashed lines.

7 Discussion and conclusion

In this paper, we have investigated an extension of the
NJL model for the light nonstrange meson sector of QCD,
where the interaction of u- and d-quarks is represented by

Fig. 7. The decay widths of π, σ and ρ (ππ and q̄q channels).
The region above Tc is represented by dashed lines.

four-fermion vertices and the phenomenon of quark con-
finement is taken into account through the elimination of
nonphysical quark-antiquark thresholds. This extension of
the NJL model describes properties of the π-, σ- and ρ-
mesons in satisfactory agreement with experiments and
with low-energy theorems. The model parameters are ob-
tained by fitting the model so that it reproduces the ex-
perimental values of the pion and ρ-meson masses, the
pion decay constant Fπ, and the ρ-meson decay constant
gρ. Moreover, it has been shown that, for the π-, σ- and
ρ-mesons, unphysical quark-antiquark thresholds do not
appear up to the critical temperature if the IR cut-off of
the form introduced here is applied.

Let us emphasize that in our model, unlike the stan-
dard NJL model [2–5], we have two cut-offs: the UV cut-
off that eliminates the UV divergences and the IR cut-off
which provides the confinement of quarks. The UV cut-off
determines the dimension of the domain of SBCS where
quarks are bosonized. It is chosen to be the same for all
sorts of mesons. The second cut-off, λM , is introduced
into the model in analogy with the bag model [16–18] and
describes finite dimensions of mesons. We suppose that
heavier mesons have smaller radii, therefore the IR cut-off
is chosen different for various mesons, being roughly pro-
portional to the meson mass. On the other hand, from the
requirement of the absence of quark-antiquark thresholds
for T < Tc, we determine more certainly the form of the
IR cut-off. It is easy to make sure that the IR cut-off of
the form (22) satisfies this condition.

The critical temperature is defined as the one at which
the pion mass equals the sum of the masses of constituent
quarks (the so-called Mott point). Thus, after the matter
reaches Tc, the pion becames unstable as the other mesons
and they all are allowed to decay into free quarks under
such conditions. This scenario is provided by the IR cut-
off scheme implemented in the present work. Although,
only scalar, pseudoscalar, and vector mesons have been
considered, the axial-vector meson can also be treated in
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the same way, and no unphysical q̄q thresholds will appear
for it if T < Tc.

Let us note that the introduction of the IR cut-off
has not dramatically changed the basic model parame-
ters compared to the standard NJL model case [31] with
λP = 0. For example, the UV cut-off increased from
1.03 GeV up to 1.09 GeV, the constituent quark mass
decreased from 280 MeV down to 242 MeV, the constant
G1 also decreased from 3.48 GeV−2 down to 2.98 GeV−2.
The current quark mass has almost not changed its value
2.1 MeV. The mass and width of the σ-meson, obtained
in this model, are in their experimental bounds [25,28].

The mechanism of the confinement of quarks that we
introduced in our model allows us to take into account the
dependence of various quantities on external momenta. As
a result, we managed to estimate additional contributions
to the amplitudes of σ → ππ, ρ → ππ that are propor-
tional to meson masses squared. It turned out that for the
decay ρ → ππ these corrections were small, and for the
decay σ → ππ they made about 30% of the amplitude and
decreased the decay rate by half. Taking into account these
contributions may be important if one wants to describe
such quantities as form factors occurring in various pro-
cesses, meson radii, scattering lengths, polarizability etc.

The σ- and ρ-mesons, considered here, can play an im-
portant role as intermediate resonances in the processes
occurring in the hot hadron matter created in ultrarela-
tivistic heavy-ion collisions. In particular, a proper consid-
eration of these states can be useful for the explanation
and prediction of signals witnessing CSR and the quark
deconfinement at the transition of the hadron matter to
the quark-gluon plasma phase and vice versa; for exam-
ple, the low-mass dilepton enhancement observed by the
CERES collaboration [34,35].

All calculations in our model are performed in the
Hartree-Fock approximation which does not take into ac-
count the next to 1/Nc contributions. For applications to
the situation in heavy-ion collisions, where a hot and dense
fireball of mesons (predominantly pions) is formed, it is of
interest to calculate contributions coming from intermedi-
ate pion resonances in the loop diagrams. The properties
of the ρ-meson can also be modified due to the cloud of pi-
ons in hot matter [36]. An analogous situation is expected
for the σ-meson [37]. In our future work we suppose to in-
vestigate the next-to-leading order corrections in the 1/Nc

expansion.
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